
Code Signing System
DEPLOYING A FAST & SECURE



2

Table of Contents

The Stakes Are High5

A Look Under The Hood6

Implementation Challenges8

Requirement #1: Protect Your Signing Keys9

Requirement #2: Keep The CI/CD Pipeline Moving10

Requirement #3: Manage Access To Signing Keys12

Requirement #4: Client Integrations14

Requirement #5: Plan For A Complex Infrastructure16

Requirement #6: Simplify Deployment17

Securing The Software Supply Chain18

Conclusion22

GaraSign: Securing & Simplifying Code Signing23

Code Signing Is Mandatory4

Introduction3



/ / Introduction

Code signing is a critical component of secure software development and 
delivery. When properly designed, a code signing system ensures the integrity 
and authenticity of the code, whether it is a mobile application, software, 
firmware, or an operating system.

Like many aspects of modern cybersecurity, code signing relies on cryptographic 
processes. As such, the private keys are mission-critical assets and must be 
protected with the highest level of security. A compromised code signing key can 
lead to catastrophe, so security is the top priority.

At the same time, in a DevOps environment, speed is paramount: code signing 
must not slow down the CI/CD pipeline. Additionally, a proper code signing 
solution must integrate with existing enterprise tools and processes for ease of 
deployment, use, and management.

Of course, every enterprise is unique and must have a flexible code signing 
solution that meets its specific organizational needs. But the fact remains that 
every software-producing organization must have a proper code signing solution 
in place.

This e-book provides key insights into designing an enterprise code signing 
system that is highly secure, exceptionally performant, and easy to deploy, 
manage, and use. While other documents provide high-level recommendations 
on what a code signing system should do, this book aims to provide detailed 
guidance on what features to implement, why those features are essential, and 
how to implement them.

3



4

/ /
Every Enterprise Must Deploy A Code Signing Solution

Code Signing Is Mandatory

Some enterprise leaders may be tempted to think that establishing a rigorous and 
secure code signing system isn’t essential or relevant to their organization. 
However, the reality is that every company that produces software must have a 
proper code signing solution in place. And, in today’s digital world, virtually all 
companies produce software of some kind, whether it’s enterprise applications for 
external customers, mobile applications for individual users, or internal tools, such 
as Excel macros and PowerShell scripts.

In some cases, signing code is not optional. For instance, major platforms like Apple 
App Store and Google Play require all mobile applications to be signed before the 
applications are made available to end-users for download. If an application is not 
signed, the platform will reject it.

To be clear, this is just one small example of the necessity of code signing. More 
significantly, signing code is necessary because it ensures the integrity and 
authenticity of the software. The inverse of this also holds true: without a secure 
code signing system in place, there is no scalable and reliable way to verify that 
software originates from a trusted source.

The following section will illustrate just how disastrous the repercussions of an 
insecure code signing system can be.



https://krebsonsecurity.com/2013/02/security-firm-bit9-hacked-used-to-spread-malware/https://www.nytimes.com/2019/03/27/opinion/asus-malware-hack.htmlhttps://www.wired.com/2012/09/adobe-digital-cert-hacked/

5

/ /
Improper Code Signing Can Have Severe Consequences

The Stakes Are High

Production code signing keys are extremely sensitive assets. If attackers compromise a 
code signing key, they can sign malware to disguise their malicious code as legitimate 
software.

Attacks of this variety can have ramifications of the highest order, from costly downtime 
and increased insurance costs to reduced trust in the company’s brand and even, in some 
cases, national security consequences.

For instance, the infamous Stuxnet worm, first discovered in 2010, sabotaged over 1,000 
Iranian nuclear centrifuges in a sophisticated nation-state attack. Stuxnet managed to 
bypass anti-malware programs, firewalls, and other security controls because it had been 
signed with trusted code signing keys, which had been previously stolen from legitimate 
companies.

In another prominent example, attackers managed to spread malware to over 18,000 
private businesses and government offices after injecting malicious code into a 
SolarWinds product called Orion. This extensive damage was only possible because the 
attackers had compromised the SolarWinds build process, ensuring that the malware 
was digitally signed with SolarWinds’ production signing key.

While these two high-profile examples may seem like rare occurrences, there have been 
a number of major cyber attacks related to code signing in recent years. Several 
well-respected organizations, including Adobe, ASUS, and Bit9, have fallen victim to 
code signing attacks.



6

/ /

1. An authorized end-user invokes a signing tool and designates which code to sign.

2. The signing tool reads the code and produces a cryptographic hash of the relevant portions.

3. The signing tool signs the hash with the signing private key.

4. The signing tool embeds the signature into the code.

Technical Synopsis Of How Code Signing Works

A Look Under The Hood

With the importance of code signing abundantly clear, it’s worth taking a moment to 
understand the technical underpinnings of code signing. Generally speaking, the code 
signing process is invoked by a user, either human or automated, and performed by a 
signing tool, as described in the four steps listed below.

Signing 
Tool

Step 1 Step 2 Step 3 Step 4

Figure 1: Code Signing Sequence



While the various code signing tools work in roughly the same manner, they can be 
invoked from a few different locations for different purposes. A proper code signing 
solution should support all of these use cases.

Developer Build - A build signed by a developer from their workstation, typically 
triggered manually via a script, the developer’s IDE, or some other local build process. 
The code that is signed comes directly from the developer’s workstation.

DevOps - A build signed by a dedicated build server in a CI/CD pipeline. The code that 
is signed is pulled from the source code repository, typically any time a developer 
commits code changes.

Production Release - A build signed by a dedicated release team with the production 
code signing key. The code that is signed usually comes from a trusted location such as 
a dedicated artifact repository or a release branch (or tag) of the source code repository.

Build
Triggered

Download
Source

Static Code
Analysis

Compile
To Binary

Binary 
Analysis

Unit
Testing

Integration
Testing

Build
Complete

+-> + + + + ->
Code

Signing
+

7

Figure 2: A Typical Build Process



8

/ /
Deploying A Code Signing Solution At Scale Is Not Easy

Implementation Challenges

Security 
Code signing keys must be protected, but legitimate end-users must be able to use the keys.

If code signing is such a fundamental component of secure software development, 
why don’t more companies have a proper solution in place? The answer is simple: 
designing and implementing a secure code signing system in an enterprise 
environment is a complex project. All of the following requirements must be met in 
order for a code signing solution to be useful.

Flexible
An enterprise solution must function within different organizational units and adapt to new tools.

Access Management
Security leaders must be able to manage access to the signing keys from a single interface.

Performance 
An enterprise code signing solution must be fast and keep the CI/CD pipeline moving.

Integrations
End-users must be able to sign code from all the tools and platforms in their environment.

Deployment
A code signing system must deploy transparently and avoid disruptions to existing processes.



9

/ /
Secure All Code Signing Keys With A Hardware Security Module

Requirement #1: Protect Your Signing Keys

Cybersecurity authorities strongly recommend that all organizations secure 
their code signing keys in a hardware security module (HSM). For example, the 
NIST white paper on code signing states that the keys should be stored in an 
HSM.

To be more precise, all code signing keys should be generated, stored, and 
used while in a non-exportable state in an appropriately certified HSM (e.g., 
FIPS 140-3, FIPS 140-2, Common Criteria, etc.). This applies to all signing 
keys, not just the production keys. 

Ideally, different HSMs (or at least different logically isolated slots of a single 
HSM) should be used for different environments (e.g., development, 
production, etc.). Any legacy keys currently stored in software should be 
imported to the HSM. After they have been safely imported and backed up, 
they should be securely deleted from the software. These imported keys 
should not have their certificates renewed once they expire. Instead, a new key 
that is generated from within the HSM should be used.

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.01262018.pdf

HSM



10

Figure 3: File Upload Method of Code Signing

/ /
Ensure High Performance With Client-Side Hashing

Requirement #2: Keep The CI/CD Pipeline Moving

Once the code signing keys are stored in an HSM, a natural question arises: what is the best way to get the 
data being signed (i.e., the binaries of the code) to the private key in order to generate the digital signature?

The easiest, and perhaps most common, approach is known as the file upload method. As the name 
suggests, this technique involves sending all the data to sign over the network to either the HSM or a server 
with direct access to the HSM, if one is in place. While this method is the most straightforward, it’s also slow, 
inefficient, and potentially insecure, as allowing executable code to be uploaded to a server that has direct 
access to the HSM exposes unnecessary security risk.

All Data Is Sent Over The Network To HSM

Build Server Binaries

LARGE TRANSFER OF DATA

HSM



11

Build Server

Only The Hash Is Sent Over The Network To HSM

Hash Of
Binaries

Binaries HSM

A better approach is to use a technique known as client-side hashing. Recall that signing data first 
requires producing a cryptographic hash of the data, which is then used as an input to the private 
key operation that generates the signature. 

Since the private key isn’t needed until after the hash is produced, the hash can be generated 
client-side before any data is sent over the network to the HSM. Hash values are always fixed in 
length and of a relatively small value, so this approach minimizes the data sent over the network, 
even when the file being signed is large. The result is significantly faster signing and a reduced 
attack surface in comparison to the file upload approach.

Figure 4: Client-Side Hashing Method of Code Signing



12

/ /
Enforce Strong Authentication & Authorization

Requirement #3: Manage Access To Signing Keys

While the HSM protects the keys from being copied, exposed, or otherwise stolen, the code signing 
system must also ensure that only authorized users can use the keys. Furthermore, those authorized 
users must only be able to use the keys at appropriate times to sign legitimate code. Since different keys 
have different sensitivity levels, the code signing system must be able to enforce different security 
controls based on the user, key, and operation being requested.

Naturally, all users should be strongly authenticated before being allowed to perform any operation. 
Since code signing can be done by both humans and automated processes, a variety of authentication 
mechanisms must be supported. Once authenticated, users should only have access to the minimum 
set of keys and permissions they require in order to perform their duties. Each key should have a policy 
that defines which security controls are required when the key is being used. At a minimum, a proper 
code signing system should support the following controls:

Multi-Factor Authentication - Strongly authenticate end-users beyond first form factors with 
techniques such as FIDO2/WebAuthn, TOTP/HOTP, etc.

Device Authentication - Authenticate the device the user is using via techniques that make use of 
secure enclaves such as the device’s Trusted Platform Module (TPM).

Just-In-Time Access - Activate and disable keys and users, as needed, to restrict when authorized 
end-users can use the keys to which they have been granted access.

Approval Workflows - Require a quorum of approvers or even multiple tiers of approvers, each 
having their own quorum size, to approve the signing request before the signature is generated.

Notifications - Send notifications via email (or other enterprise communications systems) when 
important events occur, such as administrative changes, use of sensitive signing keys, etc.



13

With these capabilities available, enterprises can apply different policies to different keys, based on their sensitivity. 
For example, the non-production keys may only require the user to be authenticated and authorized to use the key, 
whereas the production key may additionally require device and multi-factor authentication as well as a quorum of 
approvers. The production key may further be kept in a disabled state and only activated once per quarter when 
official releases must be signed.

While HSMs provide strong security, they don’t independently provide all the features listed above. Therefore, it is 
necessary to place a signing server in front of the HSM that proxies all the signing requests. This dedicated signing 
server is responsible for implementing all of the functionality listed above and only allowing offloading the signing 
request to the HSM once all the appropriate checks have been successfully performed.

Signing
Server

HSM

Figure 5: Signing Server Architecture



14

/ /
Prefer Native Client Integrations Over Custom Tools

Requirement #4: Client Integrations

As you will recall, the first step to sign code is to invoke a signing tool. 
Organizations have two choices of signing tools to use: Commercial Off The 
Shelf (COTS) tools or homegrown custom tools. Organizations should always 
prefer COTS tools, as they are kept up to date with the signature processing 
requirements by the companies that produce those tools. 

Since signing tools are not required to follow any open specification or set of 
requirements, customers that choose to use homegrown tools are left to reverse 
engineer signature outputs of COTS tools to try and update their own tools. This 
is a costly and error-prone process that should be avoided whenever possible.

So, how do you get third-party signing tools to use client-side hashing, support 
advanced security controls, integrate with external identity providers, all while 
signing with keys in an HSM? With the help of properly implemented 
cryptographic service providers. 



15

Most signing tools offload signing (and other related functions) to a cryptographic engine. By 
default, these signing tools use an engine provided by the device’s operating system, which 
usually assumes the signing key is local to the device running the signing tool. However, it is 
possible to load custom cryptographic engines (also called “cryptographic service providers,” 
or CSP for short) and instruct the signing tool to use one of these engines for signing, rather 
than the operating system’s default engine. Custom cryptographic engines can integrate 
with the server-side component of the code signing solution for authentication, signing, and 
other purposes.

When adopting this approach, it is necessary to create a cryptographic service provider that 
implements the appropriate APIs for each platform that the enterprise supports. The table 
below shows some of the cryptographic APIs for commonly used platforms.

Windows Java macOS / iOS Linux

Cryptography Next 
Generation (CNG)

Java Cryptography 
Architecture / 

Extension (JCA/JCE)

CryptoTokenKit PKCS#11, GPG, 
OpenSSL Engine

Figure 6: Cryptographic Service Providers For Major Platforms



16

/ /
Enable Multi-Tenancy & Centralized Management

Requirement #5: Plan For A Complex Infrastructure

Enterprise organizations are large and complex. Some development teams will 
have their own code signing keys, which only they use. Other teams might share 
signing keys. In order to allow independent teams to self-govern in a consistent 
way, an effective code signing system should be multi-tenant, preferably with 
subdomains and hierarchical permissions.

At the same time, enterprises often rely on a hybrid infrastructure consisting of 
legacy data centers, private clouds, and public clouds, often with multiple cloud 
providers used for different applications. This complexity must be taken into 
account as the code signing solution is designed and deployed, with the objective 
of centralized management in mind.

Centralized management is essential for an enterprise code signing solution to 
remain secure. If the signing keys are not centrally secured, the enterprise may lose 
visibility of the keys and therefore jeopardize the ability to audit key usage. In 
addition to major security risks, this may present compliance challenges.



17

/ /
Integrate Seamlessly And Transparently

Requirement #6: Simplify Deployment

In order to gain widespread adoption, a code signing solution must deploy and be maintained in a manner that causes 
the least disruption to existing tools and processes, requires minimal training, and fields few, if any, support calls.

Several of the previous sections described features that help achieve this outcome, such as native client integrations, 
which ensure that existing tools and processes continue to work, and client-side hashing, which ensures that code 
signing won’t cause a performance bottleneck.

In order to simplify deployment, a proper code signing solution should additionally support the following features:

Single-Sign On (SSO) - Authentication should integrate with existing enterprise infrastructure such as Active Directory 
or third-party identity providers. By using protocols like Security Assertion Markup Language (SAML), OpenID 
Connect (OIDC), and Kerberos, users can authenticate with their existing identities and authorize with their current 
group memberships.

SIEM Integration - Events that occur within the code signing system should be easily visible to the organization. A 
common way to achieve this is to integrate with the enterprise's Security Information and Event Management (SIEM) 
system, often by forwarding log entries to the enterprise log management platform.

Self-Service - Large enterprises with different domains are difficult to manage with a single dedicated team. Many 
enterprises prefer to allow some functions to be administered in a self-service model so as to avoid administrative 
bottlenecks. A proper code signing system should be flexible enough to allow for self-service where needed but also 
allow for top-down administration as required.

Enterprise Notifications - While integration with the enterprise SIEM system is necessary, it alone isn't sufficient for 
all notification requirements. Some notifications must be sent and processed immediately, such as those used for 
approval workflows. These notifications should be sent via the enterprise notification system. In many cases this is 
simpy email, but in some cases it can be an enterprise chat system such as Slack or Microsoft Teams.



18

/ /
Ensure The Code Being Signed Matches The Code In The Repository

Secure The Software Supply Chain

Your signing keys are secured in an HSM, you are enforcing strict and granular security controls, all activity is 
auditable and triggering appropriate notifications, and a client-side hashing architecture is ensuring that 
signatures are generated quickly without exposing an unnecessary attack surface. What could go wrong?

Assuming everything is implemented correctly, there are two ways an attacker can sign their malicious 
software with your code signing keys:

 1. Bypass all of the security controls.
 2. Receive help from an insider threat.

In order to bypass the security controls, the attacker would have to compromise an end-user’s device, hijack 
an active session or steal the victim’s authentication credentials, further bypass multi-factor authentication (if 
applicable), and then sign the payload from the compromised device, all while avoiding detection from the 
notifications and audit history.

While this may seem like a very challenging attack to pull off, keep in mind that the value of a compromised 
code signing key is extremely high. Thus, attackers with ample resources, such as nation-state actors, are 
often the ones performing these attacks. Additionally, if one or more of the attackers is an insider threat, 
bypassing these controls is much simpler, as they may already have legitimate access to the signing key.

Regardless of the approach taken, the end goal of the attacker is to sign something malicious with the 
enterprise’s production signing key. This attack can be achieved by compromising a build server or any other 
computer with automated access (i.e., no human interaction required) to request signing from the signing 
server. Since these machines are configured with valid authentication credentials and are authorized to sign, 
the controls described so far are not guaranteed to detect or prevent such an attack.



19

Build Server

Source Code Repository

Signing Server

Hash To Sign From Build Server

Source Code Source Code

HSM

=?

Verification Hash
From Signing Server

Since attackers want to remain undetected, it is not desirable for them to commit their malicious code to the source 
code repository where it is highly visible and easier to detect. Therefore, the solution is to ensure that the code being 
signed— i.e., the code being compiled to binary and signed— precisely matches the code in the source code 
repository. With client-side hashing in place, this solution translates to ensuring that the hash to sign matches the 
hash computed from compiling the source code from the source code repository. The most effective way to do this is 
with a feature called automated hash validation. 

When automated hash validation is implemented, a signing client sends a project identifier and source control revision 
number, along with the hash of the code they are requesting to sign, to the signing server. The signing server uses 
this additional information to retrieve the relevant source code from the source control repository, perform a 
deterministic build of the software, and then compute the hash independently to verify that it matches the hash 
submitted by the signing client. If the hashes do not match, the signing server will reject the request and automatically 
send notifications to administrators.

Figure 7: Automated Hash Validation Diagram



20

A natural question is the impact that automated hash validation has on performance. The most 
obvious approach to automated hash validation is to perform the validation before the signature 
is generated, known as pre-sign validation mode. This approach provides the strongest security 
benefits but has a high impact on performance and is therefore best suited for production 
signatures, which happen infrequently.

Another approach is to perform automated hash validation after the signature is generated, 
known as post-sign validation mode. This method allows the signature to be generated 
immediately, with the validation process taking place after the signature has been completed. 
Post-sign validation provides a good balance of security and performance and is therefore ideal 
for non-production signatures, such as those produced in the CI/CD pipeline.

Pre-Sign

Post-Sign

Mode Control Type Key Benefit Primary Use Case

Preventative Maximum Security Production Releases

Detective High Performance Continuous Integration

The Impact Of Automated Hash Validation On Performance

Figure 8: Pre-Sign Hash Validation vs. Post-Sign Hash Validation



Figure 9: A Build Sequence With A Signing Server In Place

21

Build
Triggered

Download
Source

Compile
To Binary

Signing
Server

Static Code
Analysis

Compile
To Binary

Pull Code
From Repo

Binary 
Analysis

Unit
Testing

Integration
Testing

Build
Complete

+-> + + ->+

+ ++

TIME

As part of the automated hash validation process, the signing server retrieves the source code from the 
source control repository and completes a deterministic build. This process’s primary purpose is to ensure 
that the hash to sign, sent from the build server, precisely matches the hash of the source code in the 
repository, proving that the code has not been tampered with.

With the source code in its possession, the signing server can perform several tasks that would typically 
be performed by the build server. These tasks include a static analysis of the source code and a binary 
analysis of the compiled code. Since the signing server can complete these tasks in parallel with the rest of 
the build process, a build is completed faster than it would be without a signing server in place. This is, of 
course, measured in wall-clock time. The overall CPU time (also known as processing time) will increase.



22

/ /
Protect Your Enterprise With Secure Code Signing

Conclusion

An insecure code signing system can have severe and costly repercussions. As 
more enterprises continue down the path of digital transformation, and as the 
digital landscape grows increasingly threatening, deploying a secure code signing 
system is more important now than ever before. 

Of course, businesses need a code signing solution that doesn’t reduce the tempo 
of day-to-day operations or present integration challenges with the platforms and 
tools they rely upon. DevOps and continuous integration and delivery practices 
are becoming the new norm, and these approaches demand extremely high 
performance.

This ebook has laid out a number of steps that enterprises can take to stand up a 
code signing solution that is secure, performant, and easy to manage and use.



23

Deploying an enterprise code signing solution is not an easy process. Code signing keys must be 
secured in a hardware security module (HSM), but doing so may present access, integration, and 
performance challenges. Additionally, advanced attackers with plenty of resources are motivated 
to compromise code signing systems and remain undetected.

GaraSign is a platform for cryptographic operations that dramatically simplifies the deployment of 
a secure code signing system. Deployed on customer-managed infrastructure between signing 
clients and your HSM, GaraSign restricts clients to proxied key access while the keys remain 
secured and non-exportable in the HSM. 

Server-side, GaraSign integrates with multiple HSMs and key managers, including on-premise and 
cloud-hosted ones, and can even support multiple different cryptographic tokens simultaneously. 
On the client-side, GaraSign integrates with all of the platforms and tools in your environment, 
from Microsoft, Apple, and Linux, to GPG, RPM, and OpenSSL, and more. 

This makes deploying GaraSign a swift and painless process.

/ /
Use GaraSign To Simplify Deployment Of A Code Signing System 

GaraSign: Securing & Simplifying Code Signing



Cloud HSM

HSM #1

HSM #2

GaraSign implements all the functionality described in this ebook, including client-side hashing, 
broad client integrations, advanced security controls, automated hash validation, and more. To 
learn more, watch this series of demo videos showcasing GaraSign's code signing capabilities.

Contact the Garantir team at info@garantir.io to schedule a live GaraSign demo.

https://www.youtube.com/playlist?list=PLv85uLatcnA8qDwBZwYbQd4EROgWG-MZ_



1041 Market Street #302
San Diego, CA 92101

(858) 751-4865
https://www.garantir.io


